Archive for 科技创新

PIXHAWK 飞行模式简易说明 (ZT)

飞行模式 中文名 英文名 MP简称 是否需GPS定位

自稳模式 Stabilize Mode Stabilize 否
模式说明:自稳模式会自动保持多轴直升机的水平并且维持目前的朝向。
相关资料:http://copter.ardupilot.cn/wiki/stabilize-mode/

定高模式 Altitude Hold AltHold 否
模式说明:此模式不需要GPS支持,pixhawk会根据气压传感器的数据保持当前高度,但不会定点,飞行器依然会漂移,您可以遥控来移动或保持位置。
定高时飞控通过控制油门来保持高度。
定高时但仍可用遥控油门来调整高度,但不可以用来降落,因为油门不会降到0。
相关资料:http://copter.ardupilot.cn/wiki/altitude-hold/

悬停模式 Loiter Mode Loiter 是
模式说明:悬停模式就是GPS定点模式。应该在起飞前先让GPS定点,避免在空中突然定位发生问题。其他方面跟定高模式基本相同。
相关资料:http://copter.ardupilot.cn/wiki/loiter-mode/

返航模式 RTL Mode RTL 是
模式说明:返航模式需要GPS定位。当切换到返航模式时,飞行器会返回家的位置。默认情况下,在返航之前,飞行器会首先飞到至少15米的高度(如果当前高度>15米,就会保持当前高度)。
家的位置:解锁时后,GPS首次定位的位置。
相关资料:http://copter.ardupilot.cn/wiki/rtl-mode/

自动模式 Auto Mode Auto 是
模式说明:此模式下飞行器会自动执行地面站Mission Planner设定好的任务,例如起飞、按顺序飞向多个航点、旋转、拍照等。
相关资料:http://copter.ardupilot.cn/wiki/auto-mode/

特技模式 Acro Mode Acro

模式说明:特技模式是仅基于速率控制的模式。
特技模式提供了遥控器摇杆到飞行器电机之间的最直接的控制关系。
在特技模式下飞行,就像是不装飞控的遥控直升机一样,需要持续不断的手工摇杆操作。
相关资料:http://copter.ardupilot.cn/wiki/acro-mode/

运动模式 Sport Mode Sport 否
模式说明:运动模式也可以说是“速率控制的自稳”加定高。它的设计目的是用于飞行FPV和拍摄移动镜头或者是飞越。
相关资料:http://copter.ardupilot.cn/wiki/sport-mode/

飘移模式 Drift Mode Drift 否
模式说明:飘移模式能让用户就像飞行安装有“自动协调转弯”的飞机一样飞行多旋翼飞行器。
相关资料:http://copter.ardupilot.cn/wiki/drift-mode/

引导模式 Guided Mode Guided 是
模式说明:此模式需要地面站软件和飞行器之间通信。连接后,在任务规划器Mission Planner软件地图界面上,在地图上任意位置点鼠标右键,选弹出菜单中的“Fly to here”(飞到这里),软件会让你输入一个高度,然后飞行器会飞到指定位置和高度并保持悬停。
相关资料:http://copter.ardupilot.cn/wiki/guided-mode

绕圈模式 Circle Mode Circle 是
模式说明:当切入绕圈模式时,飞行器会以当前位置为圆心绕圈飞行。而且此时机头会不受遥控器方向舵的控制,始终指向圆心。如果遥控器给出横滚和俯仰方向上的指令,将会移动圆心。与定高模式相同,可以通过油门来调整飞行器高度,但是不能降落。 圆的半径可以通过高级参数设置调整。
相关资料:http://copter.ardupilot.cn/wiki/circle-mode/

定点模式 Position Mode OF_Loiter 是
模式说明:定点模式是依赖于GPS的,其余基本和悬停模式相同,在定点模式下,飞行器会保持位置和头的方向不变,同时允许操作者手动控制油门。
相关资料:http://copter.ardupilot.cn/wiki/position-mode/

降落模式 Land mode Land 否
模式说明:下降至10m的过程中(或是直到声呐检测到了飞行器下面有东西之前)使用常规定高控制器,通过WPNAV_SPEED_DN参数限制下降速度,可通过Mission Planner修改,在10m内,飞行器会以LAND_SPEED参数规定的速率下降,默认为50cm/s。一到达地面,如果飞手的油门位于最低,飞行器就会自动关闭电机并锁定飞行器。
相关资料:http://copter.ardupilot.cn/wiki/land-mode/

跟着我!模式 Follow Me! Mode 地面站模式 是
模式说明:操作者地面站设备带有GPS,此GPS会将位置信息通过地面站和数传电台随时发给飞行器,飞行器实际执行的是“飞到这里”的指令。其结果就是飞行器跟随操作者移动。
相关资料:http://copter.ardupilot.cn/wiki/follow-me-mode/

简单模式 Simple Modes 可用7/8通道切换

模式说明:即无头模式,不用管机头朝向,可以将飞行器看成一个点,如果升降舵给出俯冲指令,飞行器就会飞得远离操作者;反之如果给出拉杆指令,飞行器会飞回操作者;给出向左滚转的指令,飞行器会向左飞,反之亦然。
简单模式可以让你用起飞时的头的方向控制飞行器,仅需要较好的罗盘指向。
相关资料:http://copter.ardupilot.cn/wiki/simpleandsuper-simple-modes/

超简单模式 Super Simple Modes 可用7/8通道切换

模式说明:超简单模式可以让你以飞行器朝向家——解锁位置的方向控制飞行器,但需要较好的GPS定位。
模型在家10m以内时,方向是不会更新的,所以要避免在家附近飞
在起飞时要确保控制是正确的,和简单模式一样,你应该在解锁时站在模型后面,飞手和模型所朝方向也应是一样的。
相关资料:http://copter.ardupilot.cn/wiki/simpleandsuper-simple-modes/

Comments off

多轴飞行器长飞行时间的秘诀(ZT)

里面讲了不少我自己在实践的东西,理论部分正好补充我的知识不足。转过来慢慢研究,
总结如下:
1:四轴(不要六或八)(机架650mm或以上)
2:碳纤机架和中心版,铝合金起落架装在机臂上
3:KV值小的马达(比如380KV)
4:尺寸大的浆(比如14英寸或以上)
5:6S电池
实用的重量配比:飞机:挂载:电池 等于 1:1:1

原帖在这里:
http://bbs.5imx.com/bbs/forum.php?mod=viewthread&tid=696089&extra=&page=1

前言:

其实多轴整个设置过程是个往复的循环。理论上来说空载飞得越久那么负载了之后也会飞的久一点。主要因素不外乎重量,电机,浆,电池。

在完全开始之前需要先考虑。。几轴?理论上来说,最长的飞行时间必然四轴。Y3大多数时候和四轴一样重量。不考虑。不过如果从稳定性来说四轴不及六轴。如果加上可靠性的话只有八轴,x8,y6可以损失一个电机然后依旧正常返航(相信我。。。我的x6有足够的动力。。但是挂了一个电机照样掉)

然后第二个问题是。。。有多少米。。。多少资源。。越好的结果要求越好的资源(材料/加工等等等等),然后。。。朝着无底洞开始砸钱吧

1. 机架篇

常见的机架设置有单面, 双轴, 三轴,X4, X6, XX8,双面, Y6 X8

Y6 和 X8主要在于有多余的电机可以提升可靠性。即某一个电机或者浆挂掉的时候仍可以较平稳返航。但是效率会下降。以正常的反向同轴设置为例,在最优化设计后同比喻单面低5%~8%。实际运用上最大会达到30%效率损失。。于是乎这里不考虑同轴设置。
(关于为什么同轴比平面低。有兴趣的可以参考NASA的研究报告http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970015550_1997024330.pdf 还有马里兰大学的http://terpconnect.umd.edu/~leishman/Aero/AHS2002_Griffiths.pdf)

双轴是个奇葩。。不是为正常人而生。。省去

剩下的就是 Y3, X4, X6, XX8

关键点。一样的轴距,轴数越多能用的最大浆越小。浆小了大电机使不上力。这就是为什么X6和XX8一般都会大到700~1200mm。
但是这并不是绝对的。还要看你的目标载重。(机架+电子+电池+挂载)
设计和设置的是一个循环往复的过程才能达到最好的结果。。。非常非常非常花时间(《《《《仅限于喜好diy的人或者像我这种完全不相信现成机架参数的人)

这边主要针对diy机架。现成的机架可以参考diy的思路来选购

1.1 碳纤还是铝合金?
这一直都是一个很受争议的话题。因为直接关系到机架重量。机架重量当然是越小越好
碳纤: 长处:高强度低密度, 缺点:刚度太高,所有振动全数传到中心版(或与中心版连接的关节)而且容易摔碎(耐冲击力低)
铝合金: 长处:高强度,刚度适中,耐冲击(在一定范围内) 缺点:比较重,铝合金和碳纤的密度差大概在1g/cm3

1.2 什么碳纤什么铝合金:
碳纤:其实不是一般人想的都是碳堆起来的。只是用碳纤维作为强化媒介。不同的工艺结果不太一样。不过总体来说碳纤都可以保持在一个相对稳定的强度/水平。所以在选择上只要不被“披着碳纤包装的玻纤”欺骗就好了
铝合金:太多太多了。一般用的比较多的应该是6061/6063。在这里我要说的是。我提到的铝合金标号用的是7075或者2017。最大的区别在于这两个系列的强度接近于钢的强度,但同时又有比较低的密度,非常适合用作我们的机臂。

1.3 机臂:
圆碳纤管:圆形横截面相对于方型会强很多。但是每个机臂需要外加4组固定。(重量?)
外方内圆碳纤:有强度,低密度,且方便安装
外方内方碳纤:比上面轻一点(边长相同时,不过会强度稍弱一点》结构)
铝合金:重一点,不需要固定组。可以帮助电机散热(如果有需要的话)
Q:挖洞吗?因为前面那个65分钟的挖了好多洞减重。。
A:不推荐挖洞。虽然强度够。但是可靠性大大下降。可以看到那个65分钟者大多数时间悬停。而且是几乎没风的情况。一般飞行会有紧急动作什么的。一到这种时候,挖空的地方可能会因为瞬间的动量过大而悲剧。然后损失的就不只是一个机臂而已了。

1.4 中心板:
没有别的选择。必须碳纤
厚度最大2mm足够了。我现在用的是2个1mm厚的3.5kg轻松载着
关于中心板镂空:所有雕花刻纹以圆形为主以防止应力集中导致悲剧。 且整体以中心对称为最佳(依旧防止应力集中)

1.5 电机安装板:
这真是个很尴尬的东西。主流见到的是2.5~3mm厚的碳纤。(用的原因一部分是因为可以抑制振动?)也见到很多直接挂在机臂上。理论上,多一点东西多一些重量。所以比较理想的是直接装到机臂上。

1.6 起落架
最好的起落架其实未必要像大多数那样看着很厚实。起落架的用途不外乎1.支起来够高方便装云台 2. 够抗冲击以便降落 3.尽量不影响视野
现在主流的起落架主要两种:
1. 安装在下中心板。以这种为主
qiluojia1

2.安装在机臂上
qiluojia2

前者相对容易制作,但是因为部件会很多 重量很容易就上去了 (轻易上200g+,不纳入考虑范围之内)
后者简单而且可以把重量最小化。但是部件加工相对难一点(特别是精度)
于是乎后者才是参考的方向

材料的选择:
1. 铝合金板材
2. 玻纤
3. 碳纤
4. 塑料

从加工角度和diy角度来说。铝合金板材是最简单的选择。
玻纤,强度刚度刚好。但是要定制。模具,工具7788.。。完全不适合diy。(批量制造除外)
碳纤刚度太高。。完全不会缓冲 (无视掉)
塑料,用于缓冲非常适合。但是如果机重太重容易断。但是和玻纤一样需要定制。
于是乎。唯一的最佳选择是铝合金板材

总结:
从机架选择/设计/制造的角度来看,以下的配合能获得较好的力学性能且得到相对低的重量

方案A(重量最小化):
1.0mm碳纤中心板
8mm~10mm外方内圆碳纤管(机臂)
无电机安装板
铝合金板材制起落架
前提是你买到的是真的碳纤

方案B(强化版):
1.5mm 碳纤中心板
10mm 7075/2017 铝合金方管
继续无电机安装板
铝合金板材制起落架

样本质量
假设我们要搞个6轴机架
碳纤密度参考 http://www.composite-resources.com/wp-content/uploads/2011/04/CR_Manual_Sheets.pdf 约1.6g/cm3
2个 中心板直径15cm x1.5mm厚 》》》 没镂空 90g
铝合金管 http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA2017T4 2.8g/cm3
6根 35cm 10mmx 1mm厚 》》 220g
假设6个机臂上都要起落架。起落架高度20cm(带标准云台的高度)
于是需要铝条若干根 然后于是说建个模吧

结果是用2mm的铝板切出来要30g。。1mm的话15g。。。6只脚加起来100g或者200g
所以到现在是多少种来着? 90+220+200 中心版没镂空 螺丝还没上 不过取个整。。。500g吧

当然。。。对于大多数人来说想diy没工具。找人加工又有点贵。。。直接买成品吧。。。成品基本上重量固定了就是那么多。那么就只能从挂载来考虑轴距。
理论上首选碳纤。但是有时候碳纤比铝+碳的组合重(因为各种小小零件)
2. 电机+桨+电池
先上背景知识:拉力

这个是通用拉力公式里面的变量有:空气密度,速度,面积,迎角

空气密度固定。。于是乎所有的可控变量剩下2个大类
1. 桨。 控制面积(尺寸)和迎角
2. 电池+电机。 控制速度(rpm)

其实这是个很难写的部分。。。 主要是因为不同大小和飞行条件等等会得出完全不同的配置思路

在这边就很不科学的先划分为两个大归类吧:1.暴飞 2. 稳定飞

1. 暴飞
由于暴飞需求用相对小的总重。。机架目测在400mm轴距以内的四轴(其实这完全无关。。。只是更大的更重。。摔的更痛。。不推荐)

每个电机都有独自的效率曲线。无论怎么改变桨的大小。同一个S电源下最佳效率电流值(就成为AEM吧)是一个相对固定的数字。但是往往暴飞的时候。特别是加大油门的时候。很容易实时电流值大于AEM。于是电就浪费在发热上了

于是在选择上出现了一个不太成文的选择方式
除非那种极其极其小的。。250mm以上的都可以选3s的电池
电机按照:在3s的情况下,官方给的数据中最小的桨的拉力低于且最接近整机重量的为最佳
(另外一条默认是电池一般选用 1300-2200mah。。重量为主因。。少量多飞。。。暴飞很费精力的。。。几块电池下来绝对够呛)

例如:
我目前一个小400mm 总重(机架+电线+电调+电机《需要预估》+7788+电池)850g
参考的电机 2212 980kv,3s 9047的桨拉力740 低于总重。。但是很接近。。
3
实测下 9×4.5的桨 3s2200的电池可以飞10分钟左右。大概50%油门悬停。70%油门的时候大概拉力是机重2倍且在AEM之内。。

4

2. 稳飞
这个分类主要关注在12寸以上的桨,fpv/ap,长飞行时间。
没有别的选择。。低KV 高S设置。。

原因1. 这个搭配的效率最高 85%+随便走。减少非必须的无用功消耗
2. 低电流。减少电机和电调的发热。很明显发热是我们最大的敌人
3. 低电流2。飞的久

基本计算原理和暴飞类似 先预估机器包含电池总重,同时桨的大小已经根据机架决定了。

在这个时候,电池的方案应该已经决定得差不多了主要电池方案也就6组
1. 5s 5000mah 660
2. 5s 10000mah 1300
3. 5s 15000mah 1900
4. 6s 5000mah 780
5. 6s 10000mah 1600
6. 6s 15000mah 2400

电机的选择5s在500-600kv左右选6s在400kv左右选 由于这些个kv数大都数据齐全 筛选下来。。容易得到数据的有以下一些Dualsky5010TE6 590kv(150g)5010TE9 390kv(150g)HL42-25 390KV (100g) 接着机架篇的机架来写吧 最大的可用桨是15寸 机架目前是500g电机6个。。所以600g或者900g40A电调大概每个50g 共300g其他7788加起来大概500g吧(简易云台/相机/图传什么的不是太重) 结果得出以下这个重量表
双天
5s 5000 5s 10000 5s 15000 6s 5000 6s 10000 6s 15000

battery 660 1300 1900 780 1600 2400
motor 900 900 900 900 900 900
esc 300 300 300 300 300 300
frame 500 500 500 500 500 500
misc 500 500 500 500 500 500
sum 2860 3500 4100 2980 3800 4600

HL
6s 5000 6s 10000 6s 15000

battery 780 1600 2400
motor 600 600 600
esc 300 300 300
frame 500 500 500
misc 500 500 500
sum 2680 3500 4300

然后开始套入计算器 结论以下:
DualSky HL
590kv 590kv 590kv 390kv 390kv 390kv 390kv 390kv 390kv
5s 5000 5s 10000 5s 15000 6s 5000 6s 10000 6s 15000 6s 5000 6s 10000 6s 15000
Mah 5000 10000 15000 5000 10000 15000 5000 10000 15000
weight(g) 2860 3500 4100 2980 3800 4600 2680 3500 4300
悬停时间(分钟) 8.67 14.87 19.49 10.6 17.35 21.71 19.14 27.5 31.36
满油飞行(分钟) 1.25 2.22 3.18 2.35 4.39 6yue4ri3 3.04 5.79 8.55
悬停效率(悬停时间/mah) 0.002 0.001 0.001 0.002 0.002 0.001 0.004 0.003 0.002

胜者非常明显排出来了。。 HL 某390kv配6s5000mah达到最好的飞行效率 很明显,虽然加到15ah可以续航30分钟。。但是3个单独5000mah可以飞将近一个小时。。除非脑袋坏了?!。。一般都会选前者吧 注意:这里是可以把桨限制在15“。。原因只有一个。。。 超过15“,碳桨价格几何上涨。。不合算。。而且除非你要挂单反。。。这个阶段的设置完全满足gopro和rd32一类200g以内的相机

想把飞行时间延长更多?暴力法延长飞行时间(本方法只适合追求极限飞行时间。。完全不推荐) 机型?4轴电池6s 若干mah(目测要至少10000mah)
桨:按照最前面的公式。。越大的桨能产生更多的推力。于是在同一挂重的情况下。。桨越大,飞越久电机:暂时就选刚刚某HL 390kv做例子吧重量以之前的2/3+电池来算
15“ 17“
390kv 390kv 390kv 390kv 390kv 390kv
6s 5000 6s 10000 6s 15000 6s 5000 6s 10000 6s 15000
Mah 5000 10000 15000 5000 10000 15000
weight(g) 2100 2900 3700 2100 2900 3700
悬停时间(分钟) 23.4 30.6 32.46 25.96 34.3 36.66
满油飞行(分钟) 4.35 8.41 12.47 3.31 6.35 9.39
悬停效率(悬停时间/mah) 0.0047 0.003 0.002 0.005 0.003 0.002
并不是很理想。。不过大概就如此一个意思。。按照类似的循环法找最长飞行时间

套一下文章最初的那个超级悬停时长的配置吧
无任何挂载

Motors: Hobbyking NX-4006-530KV
Esc: Hobbywing 18A Flyfun
Props: Graupner 14×8 E-prop
Batteries maxamps.com 2x4S11000
FC: KK-board SW 4.7
All up weight: 2400gr

Comments off

跟随型机器人会成产业下一个大趋势吗(ZT)

http://www.lianxianjia.com/13780.html

一年一度的RoboBusiness机器人大会本周将在波士顿举行,届时将会有多款先进的机器人产品亮相。科技媒体《连线》杂志网络版日前发文对将在本次大会上亮相的机器人进行了展望,文章认为“跟随型”机器人将会成为机器人发展的下一个大趋势。以下是文章的主要内容。

跟随型机器人会成产业下一个大趋势吗
robo1

robo2

在机器人和无人机的世界中,正在稳步增长的一个趋势就是在用户允许的情况下对其进行“跟随”,这种趋势的玩法非常有趣,比如利用无人机搭配GoPro相机来拍摄自拍视频,不仅乐趣十足,而且相对于花重金聘请直升飞机和摄制组来说,成本要低廉许多。

由3D Robotics公司推出的Iris+无人机和DroidPlanner 2.0软件中的“跟随”模式就能够实现上述拍摄情形,同样,Hexo+和AirDog两款飞行器也具备自动跟随模式。Iris+和Hexo+均能够与用户的相连接,然后根据它的GPS数据作为飞行导航,而AirDog则需要用户佩戴一个名为AirLeash的无线模块才能正常使用。

跟随领路者

除了无人机之外,如今有越来越多的陆地机器人也开始具备“跟随领路者”功能,比如 CaddyTrek推出的电动高尔夫球童已经能够取代部分劳动力,所以能够追着你的影子到处跑的机器人已经指日可待了。

具备跟随功能的机器人还拥有更加广泛的用户。以Five Elements Robotics推出的Budgee机器人为例,这是一款专门针对老年人和残疾人的轻量级助力机器人,Budgee的最高速度为每小时3.9公里左右,如果主人的行进速度太快,它就会用消息推送的方式提醒主人慢一些。同时用户还可以对它大小不一的两个眼睛的颜色进行设定,“这一创意是从我女儿的袜子木偶中得来的,”Five Elements的CEO温迪・罗伯茨(Wendy Roberts)说道。

功能方面,Budgee能够轻松折叠起来,其重量只有9公斤左右,但是却能搭负约23公斤的东西。同时,Budgee充电一次能够持续使用10个小时。此外,尽管Budgee采用了防水设计,但是它是不会随着主人一起下到泳池之中的,其所内置的传感器能够有效防止其掉下楼梯和在遇到障碍时摔倒。

Budgee的跟随功能通过嵌入在“耳朵”中的声纳传感器来实现,而在正常工作时,主人需要将一个小巧的模块安置在自己的腰带上,然后在对应的移动应用中设置Budgee的跟随距离。根据罗伯茨的介绍,目前公司正在开发控制杆接口,方便那些使用轮椅的用户对Budgee进行控制。另据了解,Budgee将在明年1月份上市,售价1400美元(约合人民币8573元)。

跟随播种者

位于美国麻萨诸塞州的初创公司Harvest Automation所研发的工业机器人拥有更为复杂的追踪系统,这些机器人主要面向农业和制造业用户,其所研发的苗圃机器人HV-100(绰号“哈维”)目前已经投入使用。根据公司联合创始人兼COO查尔斯・格林内尔(Charles Grinnell)的介绍,HV-100苗圃机器人配备了多个传感器,可以执行多种植物处理任务,如处理间距、整合和收集等等,其中一个名为LIDAR的传感器不仅能够帮助其准确避开障碍,还可实现对用户的追踪,该传感器的成本在2000到3000美元之间,这也是HV-100售价昂贵的主要原因(售价3万美元左右)。

跟随型机器人会成产业下一个大趋势吗

“我们利用LIDAR来实现追踪模式,同时也使用该传感器来执行更为复杂和精确的探测任务,”格林内尔说道,“我们的机器人需要能对客户田间的植物进行准确定位,同时还要能实现长距测量等,而LIDAR除了能够满足上述要求之外,还能够实现全天候作业,所以对于我们而言还是非常合适的。”

据了解,LIDAR所使用的传感技术采用激光扫描来对前方的物体进行3D检测,所以当它成功对用户进行跟随后,一般都会稳定运作,紧紧跟着用户进行作业。当然,如果遇到紧急情况需要停止跟随,用户只需拉下位于机器人顶部的橙色拉杆即可将其关闭。

根据格林内尔的介绍,HV-100的跟随模式还有一种非常实用的使用方法,就是根据实际作业所需实现多台机器人连续跟随,这样只需一个人工就能够控制整个机器人团队,让其完成相同的动作,而无需对机器人进行单独控制,这无疑将能够大幅提高作业效率。

此外,Harvest Automation还在研发一款面向仓库和制造厂的新型机器人,目前该机器人还处于原型阶段,为了降低制造成本,公司在该机器人上彻底抛弃了LED传感器,而仅采用LIDAR传感器,格林内尔表示LIDAR已经完全能够满足工厂型机器人的需要。

跟随机器人

Budgee和HV-100及其相关技术将会与其他80多家公司的机器人产品将会在本周的第10届RoboBusiness机器人大会上展出,目前机器人的研发成本有所降低,研发进度也有所提升,根据大会主办方Robotics Trends媒体集团总裁里奇・埃尔伯(Rich Erb)的介绍,在过去的3年中,RoboBusiness机器人大会的参会者已经增长了3倍之多,2011年,只有300名参会者,而今年已经有来自22个国家的1000名参会者进行了注册。

DroidPlanner1

DroidPlanner2

Comments off

使用无人机Drone航拍深圳大学城和深圳湾

十一国庆在深圳待着,没有出去旅游,正好遇到连续几天的晴天,早上出去使用无人机航拍了一下深圳的几个主要景点。在空中的视角和地面上完全不一样,景观也更加壮观,想必鸟类天天时空见惯了吧。

深圳大学城体育场
深圳大学城

深圳大学城
深圳大学城体育场

深圳湾体育场
深圳湾体育场

深圳湾大桥
深圳湾大桥

深圳湾
深圳湾

Comments off

自行带云台拍摄小车设计

这是网上找到的拍摄小车的设计, 小车上有智能控制系统,应该可以沿着设置的轨迹移动,也可以遥控,云台主要负责保持相机的稳定性,应该还有图传等辅助设备。

car4

car3

car2

car1

Comments off

警用无人机概念设计

Comments off

Pixhawk 飞控的飞行模式大全,英文并附上中文翻译

1 Flight Modes
2 Major Flight Modes
3 MANUAL
4 STABILIZE
5 FLY BY WIRE_A (FBWA)
6 FLY BY WIRE_B (FBWB)
7 AUTOTUNE
8 TRAINING
9 ACRO
10 CRUISE
11 AUTO
12 Return To Launch (RTL)
13 LOITER
14 CIRCLE
15 GUIDED
16 Mission Specific Modes
17 TAKEOFF
18 LAND

ArduPlane has a wide range of built in flight modes. ArduPlane can act as a simple flight stabilization system, a sophisticated autopilot, a training system or a flight safety system depending on what flight mode and options you choose. Flight modes are controlled through the radio (via a transmitter switch) via mission commands or via ground station (GCS) commands.

To setup your radio to control APM’s Flight Modes use your ground station flight mode setup screen. In the Mission Planner use the Configuration -> Flight Modes screenArduPlane-flightmodes

ArduPlane-flightmodes1
The above setup shows a configuration for a RC transmitter with a 6 position switch (or a combination of a 3 position switch with a 2 position switch). Each switch position corresponds to a PWM (pulse width modulation) range shown on the right. Each of those switch positions is mapped to one of the available flight modes. In the above example, when the switch is in a position that generates a PWM value of between 1491 and 1620 then ArduPlane will enter Training mode.
上面的这张图展示了6个开关位置(或者一个3档位的开关和一个2档位的开关),每一个档位对应一个PWM数值。

Major Flight Modes (主要飞行模式)
All of the flight modes below have optional additional controls that may be used to change the behaviour to suit particular flying needs. After you have read the introductory material below it is highly recommended that you look through the complete set of ArduPlane parameters so you can explore the full range of functionality available.

MANUAL (手动,没有自稳定)
Regular RC control, no stabilization. All RC inputs are passed through to the outputs. The only ways in which the RC output may be different from inputs are as follows:

if a configured failsafe or geofence triggers, and ArduPlane takes control
if the VTAIL_OUTPUT option is enabled, then a software VTAIL mixer is applied on the output
if the ELEVON_OUTPUT option is enabled, then a software Elevon mixer is applied on the output

STABILIZE (自稳定)(通常用在室内或者起飞,降落时),没有GPS定位,只能保持水平方向平稳。高度,和位置完全靠手动。初学者必须练习和掌握的模式。
RC control with simple stabilization. If you let go of the sticks then ArduPlane will level the plane. This is a bit like flying a plane with a lot of dihedral. You will find that while it is possible to do maneuvers like rolls and loops in stabilize mode, the tendency of the plane to right itself will make these maneuvers difficult. For people wanting the plane to mostly fly itself, with the pilot just telling it where to fly, you are better off using the FlyByWireA mode.

In stabilize mode the throttle is limited by the THR_MIN and THR_MAX settings.

Note that STABILIZE mode is not a good mode to use for tuning the control loops. You are far better off using FBWA for that.

FLY BY WIRE_A (FBWA) (电控飞A),对于大多数新手来说,这是最常用的飞行模式,但事实上,基本没人飞这个模式。
This is the most popular mode for assisted flying in ArduPlane, and is the best mode for inexperienced flyers. In this mode ArduPlane will hold the roll and pitch specified by the control sticks. So if you hold the aileron stick hard right then the plane will hold it’s pitch level and will bank right by the angle specified in the LIM_ROLL_CD option (in centidegrees). It is not possible to roll the plane past the roll limit specified in LIM_ROLL_CD, and it is not possible to pitch the plane beyond the LIM_PITCH_MAX/LIM_PITCH_MIN settings.

Note that holding level pitch does not mean the plane will hold altitude. How much altitude a plane gains or loses at a particular pitch depends on its airspeed, which is primarily controlled by throttle. So to gain altitude you should raise the throttle, and to lose altitude you should lower the throttle. If you want ArduPlane to take care of holding altitude then you should look at the FlyByWireB mode.

In FBWA mode throttle is manually controlled, but is constrained by the THR_MIN and THR_MAX settings.

In FBWA mode the rudder is under both manual control, plus whatever rudder mixing for roll you have configured. Thus you can use the rudder for ground steering, and still have it used for automatically coordinating turns.

FLY BY WIRE_B (FBWB) (电控飞B) 和电控飞A一样,但是有能自动控制高度
The FBWB mode is similar to FBWA, but ArduPlane will try to hold altitude as well. The roll and pitch control is the same as FBWA,and altitude is controlled using the elevator. The target airspeed is controlled using the throttle.

To control your altitude in FBWB mode you use the elevator to ask for a change in altitude. If you leave the elevator centered then ArduPlane will try to hold the current altitude. As you move the elevator ArduPlane will try to gain or lose altitude in proportion to how far you move the elevator. How much altitude it tries to gain for full elevator deflection depends on the FBWB_CLIMB_RATE parameter, which defaults to 2 meters/second.

Whether you need to pull back on the elevator stick or push forward to climb depends on the setting of the FBWB_ELEV_REV parameter. The default is for pulling back on the elevator to cause the plane to climb. This corresponds to the normal response direction for a RC model. If you are more comfortable with the reverse you can set FBWB_ELEV_REV to 1 and the elevator will be reversed in FBWB mode.

If you have an airspeed sensor then the throttle will control the target airspeed in the range ARSPD_FBW_MIN to ARSPD_FBW_MAX. If throttle is mimimum then the plane will try to fly at ARSPD_FBW_MIN. If it is maximum it will try to fly at ARSPD_FBW_MAX.

If you don’t have an airspeed sensor then the throttle will set the target throttle of the plane, and ArduPlane will adjust the throttle around that setting to achieve the desired altitude hold. The throttle stick can be used to push the target throttle up beyond what it calculates is needed, to fly faster.

As with FBWA, the rudder is under a combination of manual control and auto control for turn coordination.

AUTOTUNE 自动调参是pixhawk一个比较牛逼的功能,再也不需要调节飞控的PID值,只要在空中开启自动调参,pixhawk自动设置PID值。不过实际上,飞机的高度是自动控制的,飞机会在空中来回摇晃几分钟,幅度越来越小。
The AUTOTUNE mode flies in the same way as FBWA, but it does automatic tuning of roll and pitch control gains. Please read the full documentation on AUTOTUNE for more details.

TRAINING 培训
This mode is like training wheels on a bicycle and is ideal for teaching students manual R/C control. If the roll is less the the LIM_ROLL_CD parameter than the pilot has manual roll control. If the plane tries to roll past that limit then the roll will be held at that limit. The plane will not automatically roll back to level flight, but it will prevent the pilot from rolling past the limit. The same applies to pitch – the pilot has manual pitch control until the LIM_PITCH_MIN or LIM_PITCH_MAX limits are reached, at which point the plane won’t allow the pitch to go past those limits.

In training mode the rudder and throttle are both completely under manual control.

ACRO (杂技)高级应用,主要用户是想玩电控飞A或者自平衡但是又不想全手动。
ACRO (for acrobatic) is a mode for advanced users that provides rate based stabilization with attitude lock. It is a good choice for people who want to push their plane harder than you can in FBWA or STABILIZE mode without flying in MANUAL. This is the mode to use for rolls, loops and other basic aerobatic maneuvers, or if you just want an “on rails” manual flying mode.

To setup this mode you need to set ACRO_ROLL_RATE and ACRO_PITCH_RATE. These default to 180 degrees/second, and control how responsive your plane will be about each axis.

When flying in ACRO the aircraft will try to hold it’s existing attitude if you have no stick input. So if you roll the plane to a 30 degree bank angle with 10 degrees pitch and then let go of the sticks, the plane should hold that attitude. This applies upside down as well, so if you roll the plane upside down and let go of the sticks the plane will try to hold the inverted attitude until you move the sticks again.

When you apply aileron or elevator stick the plane will rotate about that axis (in body frame) at a rate proportional to the amount of stick movement. So if you apply half deflection on the aileron stick then the plane will start rolling at half of ACRO_ROLL_RATE.

So to perform a simple horizontal roll, just start in level flight then hold the aileron stick hard over while leaving the elevator stick alone. The plane will apply elevator correction to try to hold your pitch while rolling, including applying inverse elevator while inverted.

In the current implementation the controller won’t use rudder while the plane is on it’s side to hold pitch, which means horizontal rolls won’t be as smooth as a good manual pilot, but that should be fixed in a future release. This also means that it won’t hold knife-edge flight.

Performing a loop is just as simple – just start with wings level then pull back on the elevator stick while leaving the aileron alone. The controller will try to hold your roll attitude through the loop. You can stop the loop upside down if you like as part of maneuvers such as Immelman turns or cuban eights.

Note that if you are using ACRO mode to try and teach yourself aerobatic flying then it is highly recommended that you setup a geo-fence in case you get disoriented.

Warning: It is very easy to stall your plane in ACRO mode, and if you stall you should change to MANUAL mode to recover

make sure you know the limitations of your airframe, and what the correct stall recovery procedure is. This varies a lot between airframes. Search for stall recovery tutorials for R/C aircraft and read them
don’t overload your airframe, only fly ACRO mode with a lightly loaded plane
make sure you have enough airspeed for whatever maneuver you are attempting. Throttle and speed control is completely under manual pilot control in ACRO mode
practice stall recovery before trying anything too fancy. Make sure you practice when you have plenty of altitude to give you time to try different recovery strategies
It can be a lot of fun flying ACRO mode, but you can also easily stall and crash hard. Automatic stall detection and recovery in autopilots is an area of research, and is not yet implemented in APM:Plane, so if you do stall then recovery is up to you. The best mode for recovery is MANUAL.

CRUISE (自动巡航)类似电控飞B,但是有机头锁定,较多用于长距离第一视角的飞行
Cruise mode is a bit like FBWB, but it has “heading lock”. It is the ideal mode for longer distance FPV flight, as you can point the plane at a distant object and it will accurately track to that object, automatically controlling altitude, airspeed and heading.

The way it works is this:

if you have any aileron or rudder input then it flies just like FBWB. So it holds altitude until you use the elevator to change the target altitude (at the FBWB_CLIMB_RATE rate) and it adjusts airspeed based on throttle
when you let go of the aileron and rudder sticks for more than 0.5 seconds it sets an internal waypoint at your current location, and projects a target waypoint one kilometre ahead (note that heading lock will only activate if you have GPS lock, and have a ground speed of at least 3 m/s)
as it flies along it heads for the target waypoint, and constantly updates that target to always be one kilometre ahead, leaving the previous waypoint as the position that you centred the aileron and rudder sticks
as long as you don’t touch the aileron or rudder, it will run the same navigation system it uses for waypoints, including crabbing, cross-track etc, so it will very accurately hold that ground course even in the face of changing wind conditions
One of the nicer aspects of CRUISE mode is how it handles rudder. If you give it some rudder then the roll controller will keep the wings level, but the plane will yaw with the rudder. So you get a “wings level” turn, allowing you to rotate your flight to point at whatever geographic feature you want to head towards. Then when you let go of the rudder it will head straight for that point.

Note that CRUISE mode does not currently have the ability to do terrain following. The ability to follow an altitude above ground level over variable terrain is planned for a future release of APM on the PX4 controller board.注意:目前还不能在飞机的高度方面自动跟随地面的高差改变

Warning: Make sure you only fly FPV if it is allowed by your countries flight and airspace control rules. Many countries do not allow non line of sight flight without a special operating license.

AUTO 自动,用在地面站控制,航点(按照GPS坐标)飞行。
In AUTO mode the follow a mission (a set of GPS waypoints and other commands) set by your ground station configuration. When entering AUTO mode ArduPlane will continue from whatever mission item it was last doing, unless you have reset the mission.

When in AUTO ArduPlane will by default allow the pilot to influence the flight of the plane by using “stick mixing”, which allows for aileron, elevator and rudder input to steer the plane in a way that can override the autopilot control. Whether this is enabled is determined by the STICK_MIXING option. By default stick mixing behaves the same as FBWA mode.

Warning: “Home” position is always supposed to be your Planes actual GPS takeoff location:
It is very important to acquire GPS lock before arming in order for RTL, Loiter, Auto or any GPS dependent mode to work properly.
For APM:Plane the home position is the postion of the Plane when you first get GPS lock whether it was armed or not.
This means if you execute an RTL in APM:Plane, it will return to the location where it was when it first acquired GPS lock.
For APM:Plane: Plug in the battery and let it acquire GPS lock where you want it to return to: (Not the Pits).
Return To Launch (RTL)
In RTL mode the plane will return to launch point (the point where the plane first got a GPS lock) and loiter there until manual control is regained (or it runs out of fuel!). As with AUTO mode you can also “nudge” the aircraft manually in this mode using stick mixing. The target altitude for RTL mode is set using the ALT_HOLD_RTL parameter in centimeters.

Alternatively, you may configure the plane to return to a Rally Point, rather than the launch point.

Warning: “Home” position is always supposed to be your Planes actual GPS takeoff location:
It is very important to acquire GPS lock before arming in order for RTL, Loiter, Auto or any GPS dependent mode to work properly.
For APM:Plane the home position is the postion of the Plane when you first get GPS lock whether it was armed or not.
This means if you execute an RTL in APM:Plane, it will return to the location where it was when it first acquired GPS lock.
For APM:Plane: Plug in the battery and let it acquire GPS lock where you want it to return to: (Not the Pits).
LOITER (GPS控制飞行),航拍最常用的模式。可以完全脱控,悬停。飞机移动比较慢,好比用GPS位置控制了飞机在3维空中的位置。
In LOITER mode the plane will circle around the point where you started the loiter, holding altitude at the altitude that you entered loiter in. The radius of the circle is controlled by the WP_LOITER_RAD parameter, but is also limited by your NAV_ROLL_CD limit, and your NAVL1_PERIOD navigation tuning.

As with RTL (自动返航,只要起飞的时候已经定位,那么切这个模式,飞机可以制动返航,并在20米的高度,慢慢降落到起飞的位置)and AUTO mode you can “nudge” the plane while in LOITER using stick mixing, if enabled.

Warning: “Home” position is always supposed to be your Planes actual GPS takeoff location: 自动返航点就是你的飞机上电以后找到的第一个的GPS地点(不管你开没开动马达),所以在以下飞行模式必须在GPS定位以后才能进行,比如RTL,定点定高,自动等
It is very important to acquire GPS lock before arming in order for RTL, Loiter, Auto or any GPS dependent mode to work properly.
For APM:Plane the home position is the postion of the Plane when you first get GPS lock whether it was armed or not.
This means if you execute an RTL in APM:Plane, it will return to the location where it was when it first acquired GPS lock.
For APM:Plane: Plug in the battery and let it acquire GPS lock where you want it to return to: (Not the Pits).

CIRCLE 画圆(类似定点定高,但是不需要GPS定位)(这个模式比较好玩,主要用在航拍一个点,比如宝塔,飞机围绕宝塔转圈,机头永远对着宝塔,半径可调,初设20米)
Circle mode is similar to loiter, but doesn’t attempt to hold position. This is primarily meant as a failsafe mode and is the mode that the aircraft will enter by default for 20 seconds when a failsafe event occurs, before switching to RTL (一键返航).

Circle mode is deliberately a very conservative mode, and doesn’t rely on GPS positioning as it is used when GPS fails. It will do a large circle, The bank angle is set to the LIM_ROLL_CD divided by 3, to try to ensure the plane remains stable even without GPS velocity data for accelerometer correction. That is why the circle radius is so large.

Circle mode uses throttle and pitch control to maintain altitude at the altitude where it started circling.

GUIDED (导航)主要用于在地面站的数字地图上点击某个位置,然后飞机自动飞过去,另外一个用处,就是地理限围,飞机飞过边界以后,自动进入导航模式,会自动飞到一个返航地点并定点定高,等待下一个操作指令
The GUIDED mode is used when you want the aircraft to fly to a specific point on the map without setting up a mission. Most ground control stations support a “click to fly to” feature where you can click a point on the map and the aircraft will fly to that location when loiter.

The other major use for GUIDED mode is in geo-fencing. When the geo-fence is breached the aircraft will enter GUIDED mode, and head to the predefined geo-fence return point, where it will loiter until the operator takes over.

Mission Specific Modes
When flying an AUTO mission ArduPlane has some sub-modes that are set using mission items. The two main sub-modes are TAKEOFF and LAND.

TAKEOFF 起飞,通常用在使用地面站或者手机控制,自动起飞,到20米高度,然后自动悬停。
Auto takeoff is set by the mission control scripting only. The takeoff mission specifies a takeoff pitch and a target altitude. During takeoff ArduPlane will use the maximum throttle set by the THR_MAX parameter. The takeoff mission item is considered complete when the plane has reached the target altitude specified in the mission.

Before takeoff it is important that the plane be pointing into the wind, and be aligned with the runway (if a wheeled takeoff is used). The plane will try to hold its heading during takeoff, with the initial heading set by the direction the plane is facing when the takeoff starts. It is highly recommended that a compass be enabled and properly configured for auto takeoff, as takeoff with a GPS heading can lead to poor heading control.

If you are using a wheeled aircraft then you should look at the WHEELSTEER_* PID settings for controlling ground steering. If you are hand launching or using a catapult you should look at the TKOFF_THR_MINACC and TKOFF_THR_MINSPD parameters.

LAND 降落
Auto Land is set by the mission control scripting only. Throttle and altitude is controlled by the autopilot. After getting closer LAND_FLARE_ALT meters from the target altitude or LAND_FLARE_SEC seconds from the target landing point the plane will “flare” to the LAND_PITCH_CD pitch (in centidegrees) and will hold heading for the final approach.

Setting up ArduPlane for reliable auto-takeoff and landing is very airframe dependent, and it is recommended that you first get some experience flying your aircraft in FBWA mode, and be ready to take over control in manual or FBWA mode the first few times you use an automatic takeoff or landing.

You should also look through the complete list of parameters, as there are a lot of parameters that help control takeoff and landing for different situations.

1、稳定模式Stabilize
稳定模式是使用得最多的飞行模式,也是最基本的飞行模式,起飞和降落都应该使用此模式。
此模式下,飞控会让飞行器保持稳定,是初学者进行一般飞行的首选,也是FPV第一视角飞行的最佳模式。
一定要确保遥控器上的开关能很方便无误地拨到该模式,这对抢救紧急情况十分重要!

2、定高模式ALT_HOLD
初次试飞之后就可以尝试定高模式,此模式不需要GPS支持,APM会根据气压传感器的数据保持当前高度。
定高时如果不会定点,因此飞行器依然会漂移。可以遥控来移动或保持位置。
定高时就是APM控制油门来保持高度。但仍然可以用遥控油门来调整高度,不可以用来降落,因为油门不会降到0。
稳定模式和定高模式之间切换时,要让遥控发射机的油门在同一位置,避免因模式切换、油门控制方式发生变化造成飞行器突然上升或者下降。

3、悬停模式Loiter
悬停模式就是GPS定点模式。应该在起飞前先让GPS定点,避免在空中突然定位发生问题。其他方面跟定高模式基本相同。

4、简单模式Simple Mode
设置过APM飞行模式的朋友都会注意到,软件界面的各个模式旁边,都有个“Simple Mode”简单模式的勾选框。勾了这个框之后的模式,飞行中会更加简单:
不用再管飞行器机头的朝向,可以将飞行器看成一个点,如果升降舵给出俯冲指令,飞行器就会飞得远离操作者;反之如果给出拉杆指令,飞行器会飞回操作者;给出向左滚转的指令,飞行器会向左飞,反之亦然。。。注意,这些前后左右的飞行,是不管当时的机头指向的!

5、返航模式RTL
返航模式需要GPS定位。GPS在每次ARM前的定位点,就是当前的“家”的位置;GPS如果在起飞前没有定位,在空中首次定位的那个点,就会成为“家”。
进入返航模式后,飞行器会升高到15米,或者如果已经高于15米,就保持当前高度,然后飞回“家”。
还可以设置高级参数选择到“家”后是否自主降落,和悬停多少秒之后自动降落。

6、绕圈模式Circle
当切入绕圈模式时,飞行器会以当前位置为圆心绕圈飞行。而且此时机头会不受遥控器方向舵的控制,始终指向圆心。
如果遥控器给出横滚和俯仰方向上的指令,将会移动圆心。
与定高模式相同,可以通过油门来调整飞行器高度,但是不能降落。
圆的半径可以通过高级参数设置调整。

7、指导模式Guided
此模式需要地面站软件和飞行器之间通信。连接后,在任务规划器Mission Planner软件地图界面上,在地图上任意位置点鼠标右键,选弹出菜单中的“Fly to here”(飞到这里),软件会让你输入一个高度,然后飞行器会飞到指定位置和高度并保持悬停。

8、跟随模式FollowMe
跟随模式基本原理是:操作者手中的笔记本电脑带有GPS,此GPS会将位置信息通过地面站和数传电台随时发给飞行器,飞行器实际执行的是“飞到这里”的指令。其结果就是飞行器跟随操作者移动。
由于此模式需要额外的设备,暂时不讨论。

9、自动模式Auto
此模式下飞行器会自动执行地面站Mission Planner设定好的任务,例如起飞、按顺序飞向多个航点、旋转、拍照等。
此模式内容丰富,会另行详细介绍。

10: 手动:MANUAL (完全手动,没有自稳定)

11: 自动起飞,TAKEOFF 通常用在使用地面站或者手机控制,自动起飞,到20米高度,然后自动悬停。

12: 自动降落 LAND,顾名思义,就是用手机或者地面站控制,自动降落。要保证地面水平哦,否则。。。

13:自动调参AUTOTUNE 是pixhawk一个比较牛逼的功能,再也不需要调节飞控的PID值,只要在空中开启自动调参,pixhawk自动设置PID值。不过实际上,飞机的高度是自动控制的,飞机会在空中来回摇晃几分钟,幅度越来越小。

Comments off

四轴飞行器的基本原理(ZT)

1、四轴需要准备什么零件
无刷电机(4个)
电子调速器(简称电调,4个,常见有好盈、中特威、新西达等品牌)
螺旋桨(4个,需要2个正浆,2个反浆)
飞行控制板(常见有KK、FF、玉兔等品牌)
电池(11.1v航模动力电池)
遥控器(最低四通道遥控器)
机架(非必选)
充电器(尽量选择平衡充电器)

2、四轴零件之间的接线与简单说明

4个电调的正负极需要并联(红色连一起,黑色连1一起),并接到电池的正负极上;
电调3根黑色的电机控制线,连接电机;
电调有个BEC输出,用于输出5v的电压,给飞行控制板供电,和接收飞行控制板的控制信号;
遥控接收器连接在飞行控制器上,输出遥控信号,并同时从飞行控制板上得到5v供电;

【基本原理与名词解释】
1、遥控器篇
什么是通道?
通道就是可以遥控器控制的动作路数,比如遥控器只能控制四轴上下飞,那么就是1个通道。但四轴在控制过程中需要控制的动作路数有:上下、左右、前后、旋转
所以最低得4通道遥控器。如果想以后玩航拍这些就需要更多通道的遥控器了。

什么是日本手、美国手?
遥控器上油门的位置在右边是日本手、在左边是美国手,所谓遥控器油门,在四轴飞行器当中控制供电电流大小,电流大,电动机转得快,飞得高、力量大。反之同理。判断遥控器的油门很简单,遥控器2个摇杆当中,上下板动后不自动回到中间的那个就是油门摇杆。

2、飞行控制板篇
一般简称飞控就是这个东西了。
飞控的用途?
如果没有飞控板,四轴飞行器就会因为安装、外界干扰、零件之间的不一致型等原因形成飞行力量不平衡,后果就是左右、上下的胡乱翻滚,根本无法飞行,飞控板的作用就是通过飞控板上的陀螺仪,对四轴飞行状态进行快速调整(都是瞬间的事,不要妄想用人肉完成),如发现右边力量大,向左倾斜,那么就减弱右边电流输出,电机变慢,升力变小,自然就不再向左倾斜。

什么是x模式和+模式?

购买飞控的时候老板都要问这个问题,刷买什么模式的,以上就是区别。
X模式要难飞一点,但动作更灵活。+模式要好飞一点,动作灵活差一点,所以适合初学者。
特别注意,x模式和+模式的飞控安装是不同的(我只有kk飞控板,所以只能讲kk飞控)。
如果飞控板安装错误,会剧烈的晃动,根本无法飞。
四轴3.jpg
四轴2.jpg

选什么飞控好?
个人意见初学的先来个kk飞控吧,最便宜,尝个鲜够用了。

电调篇
为什么需要电调?
电调的作用就是将飞控板的控制信号,转变为电流的大小,以控制电机的转速。
因为电机的电流是很大的,通常每个电机正常工作时,平均有3a左右的电流,如果没有电调的存在,飞控板根本无法承受这样大的电流(另外也没驱动无刷电机的功能)。
同时电调在四轴当中还充当了电压变化器的作用,将11.1v的电压变为5v为飞控板和遥控器供电。

买多大的电调?
电调都会标上多少A,如20a,40a 这个数字就是电调能够提供的电流。大电流的电调可以兼容用在小电流的地方。小电流电调不能超标使用。
根据我简单测试,常见新西达2212加1045浆最大电机电流有可能达到了5a,为了保险起见,建议这样配置用30a 或 40a电调(大家用20a电调的也多),说买大一点,以后还可以用到其他地方去。

四轴专用电调是什么意思?
因为四轴飞行要求,电调快速响应,而电调有快速响应和慢速响应的区别,所以四轴需要快速响应的电调。
其实大多数常见电调是可以编程的,能通过编程来设置响应速度。所以其实并没有什么专用一说。

电调编程什么意思?
首先要说明电调是有很多功能模式的,选择这个功能就是对电调编程。
编程的途径可以直接将电调连接至遥控接收机的油门输出通道(通常是3通道),按说明书,在遥控器上通过搬动摇杆进行设置,这个方法比较麻烦,但节约。另外,还可以通过厂家的编程卡来进行设置(需要单独购买),方法简单,无需接遥控器。
为了保险,一定要将购买的电调设置一致,否则容易难于控制。如:电调的启动模式不一样,那么有些都转很快了,有些还很慢,这就有问题了。
注:通过遥控器进行设置电调,一定要接上电机,因为说明书上说的“滴滴”类的声音,是通过电机发出来的。我开始就是因为没有接电机,还疑惑怎么没声音,以为坏了。

无刷电机与螺旋桨篇
电机分为有刷电机和无刷电机,不要买错了,无刷是四轴的主流。它力气大,耐用。
电机的型号含义?
经常看人说什么2212电机,2018电机等等,到底是什么意思呢?这其实电机的尺寸。
不管什么牌子的电机,具体都要对应4位这类数字,其中前面2位是电机转子的直径,后面2位是电机转子的高度。注意,不是外壳哦。
简单来说,前面2位越大,电机越肥,后面2位越大,电机越高。 又高又大的电机,功率就更大,适合做大四轴。 通常2212电机是最常见的配置了。
四轴5.jpg

什么是电机kv值?
每个无刷电机都会标准多少kv值,这个kv是外加1v电压对应的每分钟空转转速,例如:1000kv电机,外加1v电压,电机空转时每分钟转1000转,外加2v电压,电机空转就2000转了。

桨的型号含义?
同电机类似,桨也有啥1045,7040这些4位数字,前面2位代表桨的直径(单位:英寸 1英寸=254毫米)后面2位是桨的角度。

什么是正反桨,为什么需要它?
四轴飞行为了抵消螺旋桨的自旋,相隔的桨旋转方向是不一样的,所以需要正反桨。正反桨的风都向下吹。适合顺时针旋转的叫正浆、适合逆时针旋转的是反浆。安装的时候,一定记得无论正反桨,有字的一面是向上的(桨叶圆润的一面要和电机旋转方向一致)。

电机与螺旋桨的搭配
这是非常复杂的问题,我自己也在研究当中,所以建议采用大家常见的配置吧,但原理这里可以阐述一下。
螺旋桨越大,升力就越大,但对应需要更大的力量来驱动;
螺旋桨转速越高,升力越大;
电机的kv越小,转动力量就越大;
综上所述,大螺旋桨就需要用低kv电机,小螺旋桨就需要高kv电机(因为需要用转速来弥补升力不足)
如果高kv带大桨,力量不够,那么就很困难,实际还是低俗运转,电机和电调很容易烧掉。
如果低kv带小桨,完全没有问题,但升力不够,可能造成无法起飞。
例如:常用1000kv电机,配10寸左右的桨。

电池和充电器篇
为什么要选锂电池?
同样电池容量锂电最轻,起飞效率最高。

电池的多少mah时什么意思?
表示电池容量,如1000mah电池,如果以1000ma放电,可持续放电1小时。如果以500mh放电,可以持续放电2小时。

电池后面的2s,3s,4s什么意思?
代表锂电池的节数,锂电池1节标准电压为3.7v,那么2s电池,就是代表有2个3.7v电池在里面,电压为7.4v。

电池后面多少c是什么意思?
代表电池放电能力,这是普通锂电池和动力锂电池最重要区别,动力锂电池需要很大电流放电,这个放电能力就是C来表示的。如1000mah电池 标准为5c,那么用5x1000mah,得出电池可以以5000mh的电流强度放电。
这很重要,如果用低c的电池,大电流放电,电池会迅速损坏,甚至自燃。

多少c快充是什么意思?
这个与上面的c一样,只是将放电变成了充电,如1000mah电池,2c快充,就代表可以用2000ma的电流来充电。所以千万不要图快冒然用大电流,超过规定参数充电,电池很容易损坏。

怎么配电池?
这与选择的电机、螺旋桨,想要的飞行时间相关。
容量越大,c越高,s越多,电池越重;
基本原理是用大桨,因为整体搭配下来功率高,自身升力大,为了保证可玩时间,可选高容量,高c,3s以上电池。最低建议1500mah,20c,3s。
小四轴,因为自身升力有限,整体功率也不高,就可以考虑小容量,小c,3s以下电池。(没玩过,不做建议)

平衡充电什么意思
如3s电池,内部是3个锂电池,因为制造工艺原因,没办法保证每个电池完全一致,充电放电特性都有差异,电池串联的情况下,就容易照常某些放电过度或充电过度,充电不饱满等,所以解决办法是分别对内部单节电池充电。动力锂电都有2组线,1组是输出线(2根),1组是单节锂电引出线(与s数有关),充电时按说明书,都插入充电器内,就可以进行平衡充电了。

机架篇
机架的轴长短有没有规定?
理论上讲,只要4个螺旋桨不打架就可以了,但要考虑到,螺旋桨之间因为旋转产生的乱流互相影响,建议还是不要太近,否则影响效率。 这也是为什么四轴用2叶螺旋桨比用3叶螺旋桨多的原因之一(3叶的还有个缺点,平衡不好做)

【实战调试】
安装好四轴以后是需要做一些准备工作的,这里以我用过的kk飞控为例
Kk飞控的连接
四轴7.jpg

飞控解锁
飞控接上电不是马上可以起飞的,这是安全设计,所以需要解锁。(飞控设置略,很多攻略了)
通上电,飞控板上的灯是不亮的,只有电调发出的滴滴声,将油门打到最低(注意油门方向,需要实现确定是设置的向上为最低,还是向下为最低),然后方向舵向右板到底,飞控板的灯就会亮,电调也不会再继续发声,说明准备好起飞了。

螺旋桨的安装
调试完毕,最后安装螺旋桨,安装好后,第一件事是拿手上,轻加油门,看看是否风都往下吹,电机的旋转是否是 正转和反转间隔的。如果剧烈抖动,并且升力很小,就应该是正反浆没有安装对。交换一下。 如果旋转方向不是间隔的,就需要将电调和电机的连接线1和3,交换一下,进行旋转方向校正。 次序为,先方向,后螺旋桨。

注意电池过放
电调是可以设置电池低压保护的,但尽量不要等电调保护的时候才充电,这样可以延长使用寿命。

我怎么知道能正常起飞?
一切准备完毕,怎么知道可以试飞了呢,我个人建议为了避免匆忙上马,秒炸。先拿手上试飞比较好,但要注意离身体距离。
拿手上通电,加油门,如果一切正常,四轴是 不会大幅度的晃动的,而是比较平稳。还可以故意左右晃动一下,会感觉到四轴保持平衡的反力量,只要达到这个效果,就基本达到了试飞的条件。kk飞控我复位了好几次,只要没有意外,是基本都能成功的。
试飞场地建议选草坪,这样的不容甩坏。

Comments off

锂电基础知识(翻译)

It can sometimes be difficult to know which battery is best for your application.
For R/C aircraft there is a huge variety of batteries available and while many may suit your application your ultimate goal is to purchase a battery pack that will;
-be within your budget 预算之内
-have a long cycle life 使用寿命长
-have the correct size and weight 大小,重量合适
-give you the longest flight times 以上满足的前提下,最长的飞行时间
-be able to deliver the correct voltage/amp (Power) 输出的电流和电压正确
We hope this simple guide helps you understand the different types of LiPoly (Lithium Polymer) batteries and which is right for your model.

You may have noticed by now that batteries have different ratings, sizes, plugs, wire, charge rates and chemical makeup. Lets decipher;

Capacity (mAh). 容量
This is usually the biggest number shown on the pack and is measured in mAh (Milliamp/hour) or Ah (Amp/hour). The capacity is the first indicator of the batteries size. To keep things simple, think of capacity (mAh) as the amount of fuel in your cars gas tank. A higher capacity tank will run your car for longer. A 4,000mAh battery will run for twice as long as a 2,000mAh battery.
A 2,000mah battery will (in theory) run for 1hr if drained at a constant 2,000 Milliamps.
原则上(没有虚标的话),2000mah的电池以2000milliamps放电的话可以用1小时。

Discharge (C) 放电
Discharge is the amount of power the battery can ‘push’ out and the number shown ’20C’ is an multiplication of the capacity. For example; A 20C battery can discharge at 20 x 2,000mAh which is 40,000mAh or 40Amps.
20C就是20倍电池容量,比如20C的2000mah放电是20*2000 或者40Amps

瞬时放电就是电池瞬时(10-20秒)可以达到的最高电量
This is an important number if you know your motor requires a certain power level.
In addition to this, batteries have a ‘Burst’ rate, which is the amount of power the battery can discharge for a short period, usually 10-20 seconds. A typical battery label may show 20-30C, this would mean a 1,000mAh battery can discharge 20,000mAh constantly or give a sudden and short 10-20 second 30,000mAh (30A) burst of power.
比如:一块1000mah电池写20-30C,可以按照20amps长期放电或者可以按照30amps短时放电。
Tip: A higher ‘C’ rated battery will last longer if run at a lower ‘C’ rate. Example: a 30C battery run at 20C maximum will have a longer cycle life than a 20C run at 20C each flight.

Voltage (S)电压
All lithium Polymer cells in any industry have a nominal voltage of 3.7v per cell. When fully charged a LiPoly cell should be 4.2v and when discharged it should never be below 3v.
You will notice that LiPoly RC packs are made up of layers of multiple cells. If the battery’s rating is 3S this means it is 3 x 3.7v which is 11.1v. It has 3 layers of 3.7v each. In other words, its a ‘3 cell pack’.
Lipo电池的通用标准是3.7v每一个单元,4.2v(满电)或者3V(放完),一个3单元的电池,就是3*3.7v或者11.1v。
Weight/Size
For a battery to be right for your model it must fit within the models battery compartment and also balance the plane correctly.
It’s temping to choose the biggest and most powerful battery your model can handle, but this will sacrafice flight performance and if your packs voltage is too high; destroy the ESC or Motor.
Check with your ESC and Motor specification to ensure you have the right voltage pack then check the models CG (Center of Gravity) to decide on the right battery weight.
电池的电压要与电机匹配而且要考虑平衡等因素

LiPoly Charging
Always use a lithium Polymer battery charger and never charge the battery above 4.2v per cell. (example: 2S, never above 8.4v)
Never leave a charging battery unattended.
Never allow the battery’s voltage to fall below 3.2v per cell. (example: 3S, never below 9.6v)
充电时,不要充过每个单元4.2V或者3个单元12.6v,
放电时,不要低于3每个单元3.2V或者3个单元9.6v.

Comments off

3DR的数传和其他数传都能用在3DR的飞控上APM或者Pixhawk上吗?

只要是串口透传(透明传输,不管什么协议,一个只管发,一个只管接),就支持apm数传, 注意要设置默认波特率57600。3DR 和其它433Mhz数传, 基本上是Si1000芯片(带MCU),也可以预设912Mhz频段。其它433芯片也可以使用,理论最距离一般在1000M以内ZigBee/XBee 是基于2.4G频段的,3DR没有使用可能会和2.4G遥控器有干扰,当然贵也是一个原因。我自己先用蓝牙HC-06接APM, 手机就连接DroidPlanner和Ardupilot,电脑有蓝牙的话可以,当然距离很短。后来自己diy了si4463透传模块(mcu用stm8),接收使用si4463+蓝牙,也可以正常接收。

Comments off

Previous entries 下一页 » 下一页 »